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LINEAR ACCELERATION GUIDANCE SCHEME FOR LANDING 

AND LAUNCH TRAJECTORIES I N  A VACUUM 

By Victor R .  Bond 
Manned Spacecraft' Center 

SUMMARY 

Guidance equations a r e  developed f o r  guiding a spacecraft  with f i n i t e  
continuous th rus t  from an i n i t i a l  posi t ion and ve loc i ty  t o  a terminal posi t ion 
and veloci ty  i n  a vacuum. The solut ion t o  t h i s  two-point boundary-value prob- 
l e m  i s  obtained by assuming t h a t  t he  change i n  a l t i t u d e  and out-of-plane dis- 
tance during the  motion i s  small compared with the  i n i t i a l  radius from the  
center of t he  a t t r ac t ing  body t o  the  spacecraft, and by prescribing l i n e a r  ac- 
celerat ion f o r  each of t h e  three  accelerat ion components. 
i n  general, i s  variable,  but by introduction of a constraining relat ion,  
constant-thrust  t r a j e c t o r i e s  can be generated. Similarly, by introduction of 
another constraining re la t ion ,  constant-pitch-angle t r a j e c t o r i e s  may be gener- 
a ted.  The guidance equations obtained may be used t o  guide a spacecraft  t o  a 
landing on the  moon, or t o  guide a spacecraft  during launching from the moon. 
A comparison of these r e s u l t s  with an optimum t r a j ec to ry  shows t h a t  t he  guid- 
ance equations y ie ld  a near-optimum t r a j ec to ry  f o r  t he  case of a range-free, 
constant-thrust  landing maneuver t o  a point near  t he  lunar  surface.  

The resu l t ing  thrus t ,  

INTRODUCTION 

When a spacecraft ,  during lunar landing, launch, or abort ,  i s  t o  be guided 
t o  a specif ied set of terminal conditions so t h a t  f u e l  usage is  near minimum, 
a set of guidance equations must be mechanized onboard t h e  spacecraft t ha t  w i l l  
predict ,  a t  any t i m e ,  the  necessary th rus t  vector .  I n  obtaining a solution f o r  
t he  guidance equations, it i s  desirable  t h a t  t he  following c r i t e r i a  be met: 
The equations must be computationally simple; they must be su i tab le  f o r  use i n  
as many operational modes as possible; and they must y i e ld  a solution tha t  i s  
near t he  optimum i n  f u e l  usage. 

In  order t o  obtain such a set of guidance equations, the  f i rs t  s t ep  is  

To simplify the  equations, t he  change i n  
choosing a su i t ab le  approximation which would render the  equations of motion 
amenable t o  closed form solut ion.  
spacecraft  a l t i t u d e  and out-of-plane dis tance is  assumed t o  be small compared 
with t h e . i n i t i a 1  radius from the  center  or the  a t t r ac t ing  body. This assump- 
t i o n  i s  similar t o  the  assumption of a uniform gravi ta t iona l  f i e l d .  The next 
s t e p  i s  t o  solve the  resu l t ing  simplified two-point boundary-value problem 
exp l i c i t l y .  



In this paper, the approach taken in solving the problem is to prescribe 
that the radial, circumferential, and out-of-plane components of the thrust 
acceleration are continuous and vary linearly with time. These approximate 
equations of motion can then be solved in closed form. Each of the linear ac- 
celeration components involves two parameters: One is the initial level of 
the applied acceleration, and the other is the rate of change of the applied 
acceleration. Since there are three acceleration components, a total of six 
parameters are introduced which can be determined in closed form in terms of 
the six specified terminal conditions. 
constitute the guidance equations which will always insure that the spacecraft‘s 
trajectory will meet the specified terminal conditions. By allowing one of the 
a’cceleration parameters to vanish, the terminal range is unconstrained, and 
only five specified terminal conditions are met. 
that results from this acceleration scheme is identical in form to the bilinear 
tangent law which is shown in reference 1 to be optimum without regard to bound- 
ary conditions or thrust-magnitude history. The assumptions made in reference 1 
are that the gravitational field is uniform and that there are no aerodynamic 
or other dissipative forces. 

The equations for these parameters 

The pitch-angle control law 

The approach taken in reference 2 is to assume that the acceleration com- 
ponents are linear (in time) plus a gravity component. 
accelerations are substituted back into the equations of motion, the gravity 
terms cancel completely. The work in this paper and in reference 2 was carried 
out independently and concurrently. Reference 2 does not introduce the constant- 
pitch-angle constraint. 

When the assumed 

Solutions to this two-point boundary-value problem, in general, require 
variable thrust. 
a relation may be introduced from which a burning time that will insure con- 
stant thrust may be calculated. Similarly, if the condition that the pitch 
angle remain constant is imposed, a second relation may be introduced from 
which a burning time that will insure a constant pitch angle may be calculated. 

If the condition that the thrust remain constant is imposed, 

SYMBOLS 

A magnitude of acceleration vector 

acceleration vector 

a, b, c parameters in acceleration specification defined by 
equations (23) 

ar? 86’ az linear acceleration component in radial, circumferential, 
and out- of-plane directions, respectively 

C1, C2, C3, C4, C5 time coefficients in the altitude and altitude rate 
equations defined by equations (16) 
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Subscripts : 

0 

r 

2 gravi ty  a t  surface of earth,  32.1849 f t / s e c  

a1 ti tu& 

spec i f ic  impulse 

mass 

radius of a t t r a c t i n g  body 

cy l indr ica l  coordinates defined i n  f igu re  1 

uni t  vectors defined i n  f igure  1 

th rus t  

time 

weight 

arc length or range along surface of a t t r ac t ing  body 

i n i t i a l  l e v e l  of applied accelerat ion i n  r ad ia l ,  circumferen- 
t i a l ,  and out-of-plane direct ions,  respectively 

th rus t  azimuth angle defined i n  f igure  1 

th rus t  p i t ch  angle defined i n  f igure  1 

universal  g rav i ta t iona l  constant times mass of a t t rac t ing  
bow 

4 

magnitude of p 

posi t ion vector of spacecraft ,  ru + zu 
4 4 

r Z 

burning time 

rate of change of applied accelerat ion i n  radial ,  circumfer- 
en t i a l ,  and out-of-plane direct ions,  respectively 

der iva t ive  of ( ) with respect t o  t 

value of var iab le  when t = 0 

pertaining t o  i n i t i a l  radial d i rec t ion  
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pertaining to z direction 

value of variable when t = T 

pertaining to circumferential, or X, direction 

DERIVATION OF EQUATIONS 

Solution to the Two-Point Boundary-Value Problem 

The equations of motion for a 
thrusting spacecraft in a gravita- 
tional field are M A S  A - S - 6 4  -8067 

= raB dt 

( 2 2) 
p =  r + z )  

(3) 

The coordinates r, @, and z 
are the cylindrical coordinates of 

(a) Cylindrical coordinate system (r, 
$, z) in which motion is described 

the spacecraft as shown in figure 1. 
4 

The equations (l), (2), and (3) 
may be solved analytically by pre- ur t 
scribing the linear acceleration 
components 

a = A sin 8 cos p = a + Yrt (4) r r 

A COS 8 COS p = u (# + 'Bt "@ = 

a = A sin p = a + Yzt ( 6) 

(3) 
- 
u9 

Z Z 

u z  
and making additional assumptions 
regarding the smallness of z and (b) Orientation of thrust vector 
the change in r compared with the 

Figure 1.- Coordinate system 
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i n i t i a l  radius r 
terms. 

and regarding the  magnitude of t he  applied acceleration 
0’ 

Let the a l t i t u d e  be defined by h = r - R, and assume t h a t  during the  
motion r changes only s l i g h t l y  from i ts  i n i t i a l  value r so t h a t  i n  

equation (1)’ r may be replaced by r and r by h. Also, assume that 

z << r 

.. 0’ .. 
0’ 

and may be neglected. Then equation (1) becomes 
0 .. 

h - r  g 2 + %  = a  + Y r t  r 0 ... 
(7) 

‘ 0  

Making the same assumptions as above, equation (2) becomes 

The f i r s t  term on the  l e f t  i s  the  Coriolis accelerat ion which a r i s e s  due 
t o  the motion of the  spacecraft  r e l a t ive  t o  the ro ta t ing  axis system defined 

by the u n i t  vectors ur, u p  and ’. 
with the applied accelerat ion 

and by introducing the  surface range 

This term w i l l  usually be small compared + +  

and w i l l  be neglected. With t h i s  assumption 

X = R#, equation (2)  f i n a l l y  reduces t o  
a# 

Equation (3)  becomes 

( 9 )  
.. 
z = u  + Y Z t  

Z 

i f  it i s  assumed t h s t  z 
compared with the  applied acceleration 

is  very small so t h a t  t he  gravi ty  term is negl igible  

az. 

The assumptions made i n  deriving equations (7), ( 8 ) ,  and (9) a r e  not as 
stringent as those f o r  the  usua l  flat-body analysis  which neglects both cen- 
t r i fuga l  and Coriolis accelerat ions.  
acceleration i s  neglected. The centr i fugal  accelerat ion i s  retained .by t h e  

-2 inclusion of the  - rO# term i n  equation (7). 

I n  the present analysis,  only the  Coriolis 

The d i f f e ren t i a l  equations, ( 7 ) ,  ( 8 ) ,  and ( g ) ,  may now be integrated t o  
give the equations for  t h e  three  veloci ty  and t h e  three  posit ion components. 



G = G  + C 1 t + $ C 2 t  2 + h t  3 + $ c 4 t  4 1  + - c t  5 
0 3 3  5 5  

i = i  +-(a6. R +z Y ($ t') 
O '0 

2 1  3 4 1  5 1  6 h = h  + i t + $ C l t  +gC2t  + L C t  + - C t  + - C t  
0 0  12 3 20 4 30 5 

x = x  0 + k t + -  0 ro (.$ a6t2 + $ Y6t3) 

(15) 
1 2 1  3 z = z  + z o t + - a t  +gY,t 0 2 2  

ho, Xo, zo, ho, Xo, and where 

position components when t = 0; and 

z a re  specified values of the velocity and 
0 

r 

2Xa 

R c2 = 

c4 = 
0 

r 

2 

The solution i s  now determined fo r  the approximate problem except for  the 
acceleration parameters, 

thrust  history, t ha t  is, the thrust  magnitude and direction. The s ix  equations 

up y'p arJ yr, a z' and Yz, which determine the 
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of motion, equations (10) to (1.5), may now be solved for the$e parameters in. 
terms of the terminal conditions, where t = T, X = 

z , =  z and z = z . After considerable manipulation, the equations for the 
acceleration parameters become 

k = X , h = h  T Y  h = hT, 
x7, 7 

7, 7 

1 - 2 r o  - - [JXo 2 - XT) + 2x0 + kT a @ =  7 R 

Z 

For a completely specified set of initial and terminal conditions, the 
simplified boundary value problem is now completely solved. 
.parameter remaining is the burning time which may be arbitrarily chosen within 
operational constraints. 

The only free 

Constant-Thrust Constraint 

The preceding analysis yields a thrust history that is, in general, 
variable. 
thrust magnitude may be obtained by proper choice of the burning time and the 

It can be sham that a solution to the special case of constant- 
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t h r u s t  l eve l .  
i s  

The accelerat ion f o r  constant t h rus t  ( l i nea r ly  varying mass) 

.L - - 
A =  T T/m 

m - -  t l - -  O t  
O ge'sp g€?Isp 

(23) 

The t o t a l  accelerat ion using the  l i n e a r  accelerat ion components given by 
equations (4), ( 5 ) ,  and (6) i s  of the  form 

1 
L 

A(T)  = [ a ( T )  + b(-r) t  + c(T) t  

where 

Set t ing equation (23) equal t o  equation (24) y ie lds  

J 

1--  " t  
'e I sp 

For specif ied i n i t i a l  and terminal conditions and th rus t  level ,  t h i s  equation 
must be s a t i s f i e d  a t  any time by a burning t i m e  T .  I n  par t icular ,  a t  t = 0, 
equation (26) becomes 1 

Wnen the  r e s u l t  i s  squared, the  re la t ion  t o  be solved f o r  the  constant-thrust 
burning time i s  

2 2 
a$@,) +"r (70) + a22po) = (t) (27) 
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Equation (27) i s  not suf f ic ien t  t o  determine the  burning time f o r  constant 
thrust  since the thrus t  l eve l  T cannot be a r b i t r a r i l y  specif ied i f  s i x  termi- 
n a l  conditions a r e  t o  be s a t i s f i e d .  If equation (26) is  evaluated a t  the  current 
time t and the burning time T, two equations r e s u l t  which may be solved 
simultaneously by i t e r a t i v e  means f o r  burning time and the constant th rus t  l eve l .  

For t h i s  case, the  problem involves 14 unknowns ( 3  posi t ion components, 
3 velocity components, 6 acceleration parameters, burning time, and thrus t  
l eve l ) .  These 14  unknowns a r e  completely determined s ince 6 terminal conditions 
a re  specified; 2 constraining re la t ions  a r e  introduced t o  solve fo r  burning time 
and thrust  level; and there  a r e  6 equations of motion with i n i t i a l  conditions. 

These values of burning time and th rus t  a r e  those required to meet the 
specified end conditions using constant t h rus t  f o r  the approximate problem. A s  
pointed out i n  a subsequent section, the  required values of t h rus t  and burning 
time w i l l  vary s l i gh t ly  during descent o r  ascent (experience indicates  t h a t  the  
thrust  varies only a few percent i n  magnitude). The accelerat ion parameters, 
equations (17) t o  (22), may be calculated by using t h i s  value of T,  and then 
the t ra jectory may be calculated from equations (10) t o  (15). 

Constant-Pitch-Angle Constraint 

The pi tch angle 8 is  found by dividing equation (4)  by ( 5 )  t o  obtain 

a, + Y _ t  

The time derivative of 8 i s  

For 8 t o  be constant, 8 = 0, so equation (29) yields  ( i n  addition t o  the 
t r i v i a l  solutions, 0 = 90" and 270°), 

- "rY# = O 

The solution of this equatLon f o r  burning time w i l l  insure  a t ra jec tory  with a 
constant pitch angle. The thrust magnitude is, i n  general, var iable  under t h i s  
constraint. 

9 



Relaxation of' the  Range Constraint 

For some cases, it may be more useful t o  allow the range XT t o  be f r ee .  
For example, i f  t he  range i s  constrained, the required th rus t  might be greater  
than the capabi l i ty  of the spacecraf t ' s  engines. Relaxing t h i s  end condition 
w i l l  permit the th rus t  t o  be specified i n  t he  constant t h rus t  mode. 

I n  t h i s  case there  a r e  only seven equations, t he  s i x  equations of motion 
and one equation of constraint  (equation (26) evaluated a t  current time 
which insure constant t h rus t .  There 'are a l s o  only f i v e  terminal conditions 
specified, so there  may be only 12 unknowns ( 3  posi t ion components, 3 velocity 
components, 5 accelerat ion parameters, and burning t ime) .  One of the accelera- 
t i o n  parameters may be chosen a r b i t r a r i l y .  It i s  found t o  be convenient t o  set 

t),  

equal t o  0. Equation (18) may then be solved f o r  . 
xT 

T 

x = x  + -  
7 0 2  

Equation (28) for the  tangent of the p i tch  angle becomes l i n e a r  i n  t 

a r 'r 

a# a# 
t a n 8  = - + - t  

In  reference 1, it i s  shown tha t  t h i s  i s  the  form t h a t  t he  b i l i nea r  tangent l a w  
takes when the f i n a l  range i s  allowed t o  be f r ee .  

Substi tution of equation (31)  i n to  equation (17) yields  

The equations f o r  t h e  acceleration parameters ar and Y r  become 

10 



0 12 6 .  x 
yr = - 2a6 R + 7 (ho - hT) + ~ ( h ~  + AT) - C37 

7 7 
(34) 

The awelerat ion parameters a and Yz are unchanged. Z 

USE OF THE SIMPLIFIED TVO-PoINT BOUNDARY-VALUE SOLUTION 
I N  GUIDING A SPACECRAFT I N  A GRAVITATIONAL FIELD 

The solution tha t  has been presented i s  va l id  only within the  approxima- 
tions made; t ha t  is, f o r  small changes i n  a l t i t u d e  and i n  the  z direct ion.  
Therefore, there would be inherent e r rors  if t h e  equations were used t o  predict  
the position and veloci ty  of a spacecraft  that is  thrust ing f o r  long distances 
over a spherical a t t r ac t ing  body. These e r rors  a r e  minimized, however, i f  t h e  
equations a re  solved again a f t e r  a small in te rva l  of f l i g h t  time. The i n i t i a l  
conditions and the burning time a r e  changed a f t e r  each such in te rva l .  The new 
i n i t i a l  conditions a r e  obtained from the  numerical integrat ion of the  exact 
equations (l), ( 2 ) ,  and (3) with the  use of the control variables 8 ,  p, and A. 
These control variables a r e  generated from the  same s e t  of acceleration param- 
eters  through equations ( b ) ,  ( 5 ) ,  and (6) t h a t  were used i n  the  simplified so- 
lut ion given i n  equations (10) t o  (15). The smaller t he  time in te rva l  between 
the updating of the  i n i t i a l  conditions the  more closely the t ra jec tory  w i l l  
meet the prescribed end conditions. 

The performance of t h e  acceleration-parameter re la t ions  as guidance equa- 
tions has been evaluated by a simulation programed on an IBM 7094 d i g i t a l  com- 
puter. A t ra jectory program which numerically solves equations (l), (2) ,  and 
(3) t o  predict the posi t ion and velocity of the  spacecraft  a t  any time i s  a 
basic component of t he  simulation. A guidance program which continually com- 
putes the acceleration and i t s  direct ion by solving equations (17) t o  (22) i s  
the other basic component of t he  simulation. The computation procedure i s  
depicted graphically i n  f igure  2. 

. The problem of combining the  two programs f o r  var iable  thrus t  is  s t ra ight -  
forward. 
f i na l  conditions are also subst i tuted in to  the  acceleration parameter re la t ions  

OL and Y a re  computed with these conditions and a r e  used t o  calculate  8, P, 
and A from equations ( k ) ,  ( 3 ) ,  ( 6 ) ,  and (24) f o r  t he  first s tep.  The output, 

X, X, h, h, z, z, of the  first integrat ion step i s  then used as the  i n i t i a l  
conditions i n  equations (17) t o  (22) t o  compute e, P, and A fo r  t he  next 
integration step.  
problem. 

Both se t s  of equations are given the  same i n i t i a l  conditions. The 

given i n  equations (17) t o  (22).  The acceleration parameters a’gj Y’g, a r 9  yr, 

z’ z 

The calculat ion thus proceeds t o  t h e  f i n a l  conditions of the  

11 
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I n i t i a l  condit ions - 
P 

Figure 2.- Block diagram i l l u s t r a t i n g  guidance simulation 

If the terminal range i s  specified, a nearly constant-thrust t ra jec tory  
may be generated by solving equation (26), evaluated a t  t = 0 (eq. (27)) and 
burning time T, simultaneously by using updated i n i t i a l  conditions f o r  t h rus t  
and burning time a f t e r  each integrat ion s tep .  
time i s  used i n  equations (17) t o  (22), along with t h e  updated i n i t i a l  conditions, 
t o  calculate 8 and p as i n  t h e  var iable  t h r u s t  case. I n  t e s t  cases t h a t  
were run, the thrus t  magnitude varied only about 3 percent. 

The updated value of burning 

If the range i s  allowed t o  be free,  t he  t h r u s t  l e v e l  i s  specified a t  some 
constant value, and equation (27) i s  solved for burning time using the  updated 
i n i t i a l  conditions a f t e r  each integrat ion s tep .  

12  



For constant-pitch-angle t r a j e c t o r i e s  t he  burning t i m e  is  updated a f t e r  
each t i m e  s t ep  by solving equation (30) and then using the  updated burning 
t i m e  and i n i t i a l  conditions t o  update A and p .  

A s  t h e  terminal conditions are approached, the  burning time, which is  
e s sen t i a l ly  the  t i m e  t o  go before cut-off, decreases and reduces t o  zero a t  cut- 
o f f .  The accelerat ion parameters given by equations (17) t o  (22) approach 
i n f i n i t y  as burning approaches zero. This d i f f i c u l t y  was overcome i n  the ex- 
amples presented by holding t h e  values of the  accelerat ion parameters constant 
f o r  the  last f e w  in tegra t ion  s teps .  

The two examples presented i n  f igure  3 and t ab le  I i l l u s t r a t e  some of the 
resul ts  of t he  simulation. The first a m p l e  ( f i g .  3) i s  a portion of a con- 
s t a n t  th rus t ,  range-free, in-plane, lunar-landing maneuver from an a l t i t ude  of 
50 000 feet  t o  10 000 f e e t  with a thrust-to-init ial-weight r a t i o  of 0.4. The 
l inear-accelerat ion guidance solut ion i s  compared with a calculus-of-variations 
minimum-fuel solut ion.  
qu i t e  d i f f e ren t  i n  a l t i t u d e  and v e r t i c a l  velocity,  t h e  desired f i n a l  conditions 
are t h e  same, and the  burning times are very nearly equal. In  both cases, the 
amount of f u e l  burned was f o r  a i l  prac t ica l  purposes the  same. 
burning t i m e  was 300.9 seconds. 
during t h e  las t  14 seconds. 

Even though the  t r a j e c t o r i e s  a r e  not the  same, being 

The t o t a l  
The accelerat ion parameters were held constant 

The second example ( t a b l e  I) i s  a portion of a lunar  landing from an 
a l t i t u d e  of 10 000 feet  t o  1000 f e e t  i n  which a constant p i tch  angle of 139.69" 
i s  used. In  t h i s  example, it was specif ied t h a t  t he  f i n a l  posit ion must be 
10 000 f e e t  away from t h e  i n i t i a l  plane of t he  motion. 
conditions were within reasonable tolerances of those specif ied.  The f i n a l  
a l t i t u d e  was only 3 f e e t  higher than t h a t  specified,  and t h e  horizontal and 
v e r t i c a l  ve loc i t i e s  were each approximately 2 f t / s e c  grea te r  than tha t  speci- 
f i e d .  The t o t a l  burning 
t i m e  was 94.20 seconds. 
t h e  las t  0.2 second. 

A l l  of the s i x  end 

The f u e l  burned was 0.1028 of t he  i n i t i a l  weight. 
The accelerat ion parameters w e r e  held constant during 
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Figure 3.- Comparison of minimum fuel and linear acceleration guidance 
solutions for a lunar descent problem (T/Wo = 0.4; I SP = 31.5 sec). 
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(c) Horizontal velocity as a function of time 
Figure 3 .- Continued 
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Figure 3.- Concluded. 
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TABLE I. - OUT- OF- PLANE CONSTANT- PITCH-ANGLE DESCENT FROM ALTITUDE 
'OF 10 000 FEET TO 1000 FEET ABOVE LUNAR SURFACE 

48 000.8 

1003. o 
10 000.9 

101.93 

2.02 

[ o  = 139.69"; T = 94.20 sec; I = 315 sec] 
SP 

48 000.0 

1000.0 

10 000.0 

100.0 

0 

h, ft * 

2, f t . .  . . . 
i, ft/sec . . . 
L, ft/sec . . . 
i, ft/sec . . . 

Initial conditions 
Specified 
values 

0 

10 000 

0 

891.47 

174.72 

0 
- . .  

0.78 I 0 

CONCLUDING REMARKS 

A guidance scheme for landing and launch maneuvers in a central force 
field has been investigated and simulated on a digital computer. 
ity of the guidance scheme has been demonstrated by two examples. 
example is a lunar-landing maneuver from an altitude of 50 000 to 10 000 feet 
with a constant thrust-to-initial-weight ratio of 0.4. 
with a calculus-of-variations fuel-optimum trajectory, between the same end 
points, and the fuel burned was the same for both methods. The second is a 
lunar-landing maneuver from an altitude of 10 000 to 1000 feet with variable 
thrust and a constant pitch angle of 139.69". The specified end conditions 
were attained in both examples. 

The flexibil- 
The first 

This case was compared 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, December 4, 1964 
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